use core::fmt; use volatile::Volatile; use lazy_static::lazy_static; use spin::Mutex; #[allow(dead_code)] #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[repr(u8)] pub enum Color { Black = 0, Blue = 1, Green = 2, Cyan = 3, Red = 4, Magenta = 5, Brown = 6, LightGray = 7, DarkGray = 8, LightBlue = 9, LightGreen = 10, LightCyan = 11, LightRed = 12, Pink = 13, Yellow = 14, White = 15, } #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[repr(transparent)] struct ColorCode(u8); impl ColorCode { fn new(foreground: Color, background: Color) -> ColorCode { ColorCode((background as u8) << 4 | (foreground as u8)) } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[repr(C)] struct ScreenChar { ascii_carachter: u8, color_code: ColorCode, } const BUFFER_HEIGHT: usize = 25; const BUFFER_WIDTH: usize = 80; #[repr(transparent)] struct Buffer { // wrapping the `ScreenChar` in a generic `Volatile` // type prevents the compiler from optimizing writes // away since the program only writes to it but never // reads from it. // by making it volatile we signal to the compiler // that our write call have side-effects // to interact with this type the `write()` and `read()` // methods must be used now chars: [[Volatile; BUFFER_WIDTH]; BUFFER_HEIGHT], } pub struct Writer { column_position: usize, color_code: ColorCode, buffer: &'static mut Buffer, } lazy_static! { pub static ref WRITER: Mutex = Mutex::new(Writer { column_position: 0, color_code: ColorCode::new(Color::Pink, Color::Black), buffer: unsafe { &mut *(0xB8000 as *mut Buffer) }, }); } impl fmt::Write for Writer { fn write_str(&mut self, s: &str) -> fmt::Result { self.write_string(s); Ok(()) } } #[macro_export] macro_rules! print { ($($arg:tt)*) => ($crate::vga_buffer::_print(format_args!($($arg)*))); } #[macro_export] macro_rules! println { () => ($crate::print!("\n")); ($($arg:tt)*) => ($crate::print!("{}\n", format_args!($($arg)*))); } #[doc(hidden)] pub fn _print(args: fmt::Arguments) { use core::fmt::Write; WRITER.lock().write_fmt(args).unwrap(); } impl Writer { pub fn write_byte(&mut self, byte: u8) { match byte { b'\n' => self.new_line(), byte => { if self.column_position >= BUFFER_WIDTH { self.new_line(); } let row = BUFFER_HEIGHT - 1; let col = self.column_position; let color_code = self.color_code; self.buffer.chars[row][col].write(ScreenChar { ascii_carachter: byte, color_code, }); self.column_position += 1; } } } pub fn write_string(&mut self, s: &str) { for byte in s.bytes() { match byte { // printable ascii byte or newline 0x20..=0x7E | b'\n' => self.write_byte(byte), // not part of printable ascii range _ => self.write_byte(0xFE), } } } fn new_line(&mut self) { for row in 1..BUFFER_HEIGHT { for col in 0..BUFFER_WIDTH { let character = self.buffer.chars[row][col].read(); self.buffer.chars[row - 1][col].write(character); } } self.clear_row(BUFFER_HEIGHT - 1); self.column_position = 0; } // this method clears a row by overwriting all of its // characters with a space character. fn clear_row(&mut self, row: usize) { let blank = ScreenChar { ascii_carachter: b' ', color_code: self.color_code, }; for col in 0..BUFFER_WIDTH { self.buffer.chars[row][col].write(blank); } } }